Difference between revisions of "Short Notes on Wavelets"
From PaskvilWiki
(→Using numpy array's) |
(→Integer Haar Wavelets, Python implementation) |
||
Line 2: | Line 2: | ||
This is a trivial implementation of Haar integer-to-integer wavelets. | This is a trivial implementation of Haar integer-to-integer wavelets. | ||
+ | |||
+ | The ''d'' array (''list'' or ''numpy.array'') '''has''' to be power of 2. | ||
+ | |||
Note that resulting values typically use 1 more bit than original ones - if source values are in [0..N) interval, then resulting values are in (-N, N) interval. | Note that resulting values typically use 1 more bit than original ones - if source values are in [0..N) interval, then resulting values are in (-N, N) interval. | ||
Line 26: | Line 29: | ||
=== Using numpy array's === | === Using numpy array's === | ||
− | <pre>def haar_int_fwd_1d_np(d): | + | <pre>import numpy as np |
+ | |||
+ | def haar_int_fwd_1d_np(d): | ||
if len(d) == 1: | if len(d) == 1: | ||
return d | return d |
Revision as of 16:02, 24 February 2017
Integer Haar Wavelets, Python implementation
This is a trivial implementation of Haar integer-to-integer wavelets.
The d array (list or numpy.array) has to be power of 2.
Note that resulting values typically use 1 more bit than original ones - if source values are in [0..N) interval, then resulting values are in (-N, N) interval.
Using Lists
def haar_int_fwd_1d(d): if len(d) == 1: return d even = d[::2] odd = d[1::2] hp = [j - i for i, j in zip(even, odd)] lp = [i + (w >> 1) + (w % 2) for i, w in zip(even, hp)] return haar_int_fwd_1d(lp) + hp def haar_int_inv_1d(d): if len(d) == 1: return d even = haar_int_inv_1d(d[:len(d) >> 1]) odd = d[len(d) >> 1:] lp = [i - (j >> 1) - (j % 2) for i, j in zip(even, odd)] hp = [i + j for i, j in zip(lp, odd)] return [x for t in zip(lp, hp) for x in t]
Using numpy array's
import numpy as np def haar_int_fwd_1d_np(d): if len(d) == 1: return d hp = d[1::2] - d[::2] lp = d[::2] + (hp >> 1) + (hp % 2) return np.concatenate((haar_int_fwd_1d_np(lp), hp)) def haar_int_inv_1d_np(d): if len(d) == 1: return d lp = haar_int_inv_1d_np(d[:len(d) >> 1]) hp = d[len(d) >> 1:] even = lp - (hp >> 1) - (hp % 2) return np.ravel(np.column_stack((even, even + hp)))